Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Crit Care ; 27(1): 234, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: covidwho-20242141

RESUMO

Angiopoietin-2 (Ang-2) is associated with vascular endothelial injury and permeability in the acute respiratory distress syndrome (ARDS) and sepsis. Elevated circulating Ang-2 levels may identify critically ill patients with distinct pathobiology amenable to targeted therapy. We hypothesized that plasma Ang-2 measured shortly after hospitalization among patients with sepsis would be associated with the development of ARDS and poor clinical outcomes. To test this hypothesis, we measured plasma Ang-2 in a cohort of 757 patients with sepsis, including 267 with ARDS, enrolled in the emergency department or early in their ICU course before the COVID-19 pandemic. Multivariable models were used to test the association of Ang-2 with the development of ARDS and 30-day morality. We found that early plasma Ang-2 in sepsis was associated with higher baseline severity of illness, the development of ARDS, and mortality risk. The association between Ang-2 and mortality was strongest among patients with ARDS and sepsis as compared to those with sepsis alone (OR 1.81 vs. 1.52 per log Ang-2 increase). These findings might inform models testing patient risk prediction and strengthen the evidence for Ang-2 as an appealing biomarker for patient selection for novel therapeutic agents to target vascular injury in sepsis and ARDS.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Sepse , Humanos , Prognóstico , Angiopoietina-2 , Estado Terminal , Pandemias
2.
Nat Biomed Eng ; 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: covidwho-2221821

RESUMO

Lateral-flow assays (LFAs) are rapid and inexpensive, yet they are nearly 1,000-fold less sensitive than laboratory-based tests. Here we show that plasmonically active antibody-conjugated fluorescent gold nanorods can make conventional LFAs ultrasensitive. With sample-to-answer times within 20 min, plasmonically enhanced LFAs read out via a standard benchtop fluorescence scanner attained about 30-fold improvements in dynamic range and in detection limits over 4-h-long gold-standard enzyme-linked immunosorbent assays, and achieved 95% clinical sensitivity and 100% specificity for antibodies in plasma and for antigens in nasopharyngeal swabs from individuals with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Comparable improvements in the assay's performance can also be achieved via an inexpensive portable scanner, as we show for the detection of interleukin-6 in human serum samples and of the nucleocapsid protein of SARS-CoV-2 in nasopharyngeal samples. Plasmonically enhanced LFAs outperform standard laboratory tests in sensitivity, speed, dynamic range, ease of use and cost, and may provide advantages in point-of-care diagnostics.

3.
Critical care explorations ; 4(12), 2022.
Artigo em Inglês | EuropePMC | ID: covidwho-2147443

RESUMO

IMPORTANCE: Multistate models yield high-fidelity analyses of the dynamic state transition and temporal dimensions of a clinical condition’s natural history, offering superiority over aggregate modeling techniques for addressing these types of problems. OBJECTIVES: To demonstrate the utility of these models in critical care, we examined acute kidney injury (AKI) development, progression, and outcomes in COVID-19 critical illness through multistate analyses. DESIGN, SETTING, AND PARTICIPANTS: Retrospective cohort study at an urban tertiary-care academic hospital in the United States. All patients greater than or equal to 18 years in an ICU with COVID-19 in 2020, excluding patients with preexisting end-stage renal disease. MAIN OUTCOMES AND MEASURES: Using electronic health record data, we determined AKI presence/stage in discrete 12-hour time windows and fit multistate models to determine longitudinal transitions and outcomes. RESULTS: Of 367 encounters, 241 (66%) experienced AKI (maximal stages: 88 stage-1, 49 stage-2, 104 stage-3 AKI [51 received renal replacement therapy (RRT), 53 did not]). Patients receiving RRT overwhelmingly received invasive mechanical ventilation (IMV) (n = 60, 95%) compared with the AKI-without-RRT (n = 98, 53%) and no-AKI groups (n = 39, 32%;p < 0.001), with similar mortality patterns (RRT: n = 36, 57%;AKI: n = 74, 40%;non-AKI: n = 23, 19%;p < 0.001). After 24 hours in the ICU, almost half the cohort had AKI (44.9%;95% CI, 41.6–48.2%). At 7 days after stage-1 AKI, 74.0% (63.6–84.4) were AKI-free or discharged. By contrast, fewer patients experiencing stage-3 AKI were recovered (30.0% [24.1–35.8%]) or discharged (7.9% [5.2–10.7%]) after 7 days. Early AKI occurred with similar frequency in patients receiving and not receiving IMV: after 24 hours in the ICU, 20.9% of patients (18.3–23.6%) had AKI and IMV, while 23.4% (20.6–26.2%) had AKI without IMV. CONCLUSIONS AND RELEVANCE: In a multistate analysis of critically ill patients with COVID-19, AKI occurred early and heterogeneously in the course of critical illness. Multistate methods are useful and underused in ICU care delivery science as tools for understanding trajectories, prognoses, and resource needs.

4.
EBioMedicine ; 85: 104295, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: covidwho-2104816

RESUMO

BACKGROUND: A comparison of pneumonias due to SARS-CoV-2 and influenza, in terms of clinical course and predictors of outcomes, might inform prognosis and resource management. We aimed to compare clinical course and outcome predictors in SARS-CoV-2 and influenza pneumonia using multi-state modelling and supervised machine learning on clinical data among hospitalised patients. METHODS: This multicenter retrospective cohort study of patients hospitalised with SARS-CoV-2 (March-December 2020) or influenza (Jan 2015-March 2020) pneumonia had the composite of hospital mortality and hospice discharge as the primary outcome. Multi-state models compared differences in oxygenation/ventilatory utilisation between pneumonias longitudinally throughout hospitalisation. Differences in predictors of outcome were modelled using supervised machine learning classifiers. FINDINGS: Among 2,529 hospitalisations with SARS-CoV-2 and 2,256 with influenza pneumonia, the primary outcome occurred in 21% and 9%, respectively. Multi-state models differentiated oxygen requirement progression between viruses, with SARS-CoV-2 manifesting rapidly-escalating early hypoxemia. Highly contributory classifier variables for the primary outcome differed substantially between viruses. INTERPRETATION: SARS-CoV-2 and influenza pneumonia differ in presentation, hospital course, and outcome predictors. These pathogen-specific differential responses in viral pneumonias suggest distinct management approaches should be investigated. FUNDING: This project was supported by NIH/NCATS UL1 TR002345, NIH/NCATS KL2 TR002346 (PGL), the Doris Duke Charitable Foundation grant 2015215 (PGL), NIH/NHLBI R35 HL140026 (CSC), and a Big Ideas Award from the BJC HealthCare and Washington University School of Medicine Healthcare Innovation Lab and NIH/NIGMS R35 GM142992 (PS).


Assuntos
COVID-19 , Influenza Humana , Pneumonia Viral , Humanos , SARS-CoV-2 , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Estudos Retrospectivos , Hospitais
5.
Lancet Respir Med ; 9(12): 1377-1386, 2021 12.
Artigo em Inglês | MEDLINE | ID: covidwho-2076878

RESUMO

BACKGROUND: Patients with COVID-19-related acute respiratory distress syndrome (ARDS) have been postulated to present with distinct respiratory subphenotypes. However, most phenotyping schema have been limited by sample size, disregard for temporal dynamics, and insufficient validation. We aimed to identify respiratory subphenotypes of COVID-19-related ARDS using unbiased data-driven approaches. METHODS: PRoVENT-COVID was an investigator-initiated, national, multicentre, prospective, observational cohort study at 22 intensive care units (ICUs) in the Netherlands. Consecutive patients who had received invasive mechanical ventilation for COVID-19 (aged 18 years or older) served as the derivation cohort, and similar patients from two ICUs in the USA served as the replication cohorts. COVID-19 was confirmed by positive RT-PCR. We used latent class analysis to identify subphenotypes using clinically available respiratory data cross-sectionally at baseline, and longitudinally using 8-hourly data from the first 4 days of invasive ventilation. We used group-based trajectory modelling to evaluate trajectories of individual variables and to facilitate potential clinical translation. The PRoVENT-COVID study is registered with ClinicalTrials.gov, NCT04346342. FINDINGS: Between March 1, 2020, and May 15, 2020, 1007 patients were admitted to participating ICUs in the Netherlands, and included in the derivation cohort. Data for 288 patients were included in replication cohort 1 and 326 in replication cohort 2. Cross-sectional latent class analysis did not identify any underlying subphenotypes. Longitudinal latent class analysis identified two distinct subphenotypes. Subphenotype 2 was characterised by higher mechanical power, minute ventilation, and ventilatory ratio over the first 4 days of invasive mechanical ventilation than subphenotype 1, but PaO2/FiO2, pH, and compliance of the respiratory system did not differ between the two subphenotypes. 185 (28%) of 671 patients with subphenotype 1 and 109 (32%) of 336 patients with subphenotype 2 had died at day 28 (p=0·10). However, patients with subphenotype 2 had fewer ventilator-free days at day 28 (median 0, IQR 0-15 vs 5, 0-17; p=0·016) and more frequent venous thrombotic events (109 [32%] of 336 patients vs 176 [26%] of 671 patients; p=0·048) compared with subphenotype 1. Group-based trajectory modelling revealed trajectories of ventilatory ratio and mechanical power with similar dynamics to those observed in latent class analysis-derived trajectory subphenotypes. The two trajectories were: a stable value for ventilatory ratio or mechanical power over the first 4 days of invasive mechanical ventilation (trajectory A) or an upward trajectory (trajectory B). However, upward trajectories were better independent prognosticators for 28-day mortality (OR 1·64, 95% CI 1·17-2·29 for ventilatory ratio; 1·82, 1·24-2·66 for mechanical power). The association between upward ventilatory ratio trajectories (trajectory B) and 28-day mortality was confirmed in the replication cohorts (OR 4·65, 95% CI 1·87-11·6 for ventilatory ratio in replication cohort 1; 1·89, 1·05-3·37 for ventilatory ratio in replication cohort 2). INTERPRETATION: At baseline, COVID-19-related ARDS has no consistent respiratory subphenotype. Patients diverged from a fairly homogenous to a more heterogeneous population, with trajectories of ventilatory ratio and mechanical power being the most discriminatory. Modelling these parameters alone provided prognostic value for duration of mechanical ventilation and mortality. FUNDING: Amsterdam UMC.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Idoso , COVID-19/complicações , Estudos Transversais , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Países Baixos , Estudos Prospectivos , Respiração Artificial , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2
6.
Crit Care ; 26(1): 278, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: covidwho-2029727

RESUMO

BACKGROUND: Studies quantifying SARS-CoV-2 have focused on upper respiratory tract or plasma viral RNA with inconsistent association with clinical outcomes. The association between plasma viral antigen levels and clinical outcomes has not been previously studied. Our aim was to investigate the relationship between plasma SARS-CoV-2 nucleocapsid antigen (N-antigen) concentration and both markers of host response and clinical outcomes. METHODS: SARS-CoV-2 N-antigen concentrations were measured in the first study plasma sample (D0), collected within 72 h of hospital admission, from 256 subjects admitted between March 2020 and August 2021 in a prospective observational cohort of hospitalized patients with COVID-19. The rank correlations between plasma N-antigen and plasma biomarkers of tissue damage, coagulation, and inflammation were assessed. Multiple ordinal regression was used to test the association between enrollment N-antigen plasma concentration and the primary outcome of clinical deterioration at one week as measured by a modified World Health Organization (WHO) ordinal scale. Multiple logistic regression was used to test the association between enrollment plasma N-antigen concentration and the secondary outcomes of ICU admission, mechanical ventilation at 28 days, and death at 28 days. The prognostic discrimination of an externally derived "high antigen" cutoff of N-antigen ≥ 1000 pg/mL was also tested. RESULTS: N-antigen on D0 was detectable in 84% of study participants. Plasma N-antigen levels significantly correlated with RAGE (r = 0.61), IL-10 (r = 0.59), and IP-10 (r = 0.59, adjusted p = 0.01 for all correlations). For the primary outcome of clinical status at one week, each 500 pg/mL increase in plasma N-antigen level was associated with an adjusted OR of 1.05 (95% CI 1.03-1.08) for worse WHO ordinal status. D0 plasma N-antigen ≥ 1000 pg/mL was 77% sensitive and 59% specific (AUROC 0.68) with a positive predictive value of 23% and a negative predictive value of 93% for a worse WHO ordinal scale at day 7 compared to baseline. D0 N-antigen concentration was independently associated with ICU admission and 28-day mechanical ventilation, but not with death at 28 days. CONCLUSIONS: Plasma N-antigen levels are readily measured and provide important insight into the pathogenesis and prognosis of COVID-19. The measurement of N-antigen levels early in-hospital course may improve risk stratification, especially for identifying patients who are unlikely to progress to severe disease.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Nucleocapsídeo , RNA Viral
7.
Am J Respir Crit Care Med ; 204(11): 1274-1285, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1546620

RESUMO

Rationale: Two distinct subphenotypes have been identified in acute respiratory distress syndrome (ARDS), but the presence of subgroups in ARDS associated with coronavirus disease (COVID-19) is unknown. Objectives: To identify clinically relevant, novel subgroups in COVID-19-related ARDS and compare them with previously described ARDS subphenotypes. Methods: Eligible participants were adults with COVID-19 and ARDS at Columbia University Irving Medical Center. Latent class analysis was used to identify subgroups with baseline clinical, respiratory, and laboratory data serving as partitioning variables. A previously developed machine learning model was used to classify patients as the hypoinflammatory and hyperinflammatory subphenotypes. Baseline characteristics and clinical outcomes were compared between subgroups. Heterogeneity of treatment effect for corticosteroid use in subgroups was tested. Measurements and Main Results: From March 2, 2020, to April 30, 2020, 483 patients with COVID-19-related ARDS met study criteria. A two-class latent class analysis model best fit the population (P = 0.0075). Class 2 (23%) had higher proinflammatory markers, troponin, creatinine, and lactate, lower bicarbonate, and lower blood pressure than class 1 (77%). Ninety-day mortality was higher in class 2 versus class 1 (75% vs. 48%; P < 0.0001). Considerable overlap was observed between these subgroups and ARDS subphenotypes. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RT-PCR cycle threshold was associated with mortality in the hypoinflammatory but not the hyperinflammatory phenotype. Heterogeneity of treatment effect to corticosteroids was observed (P = 0.0295), with improved mortality in the hyperinflammatory phenotype and worse mortality in the hypoinflammatory phenotype, with the caveat that corticosteroid treatment was not randomized. Conclusions: We identified two COVID-19-related ARDS subgroups with differential outcomes, similar to previously described ARDS subphenotypes. SARS-CoV-2 PCR cycle threshold had differential value for predicting mortality in the subphenotypes. The subphenotypes had differential treatment responses to corticosteroids.


Assuntos
Corticosteroides/uso terapêutico , Tratamento Farmacológico da COVID-19 , Análise de Classes Latentes , Síndrome do Desconforto Respiratório/tratamento farmacológico , Idoso , COVID-19/complicações , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome do Desconforto Respiratório/classificação , Síndrome do Desconforto Respiratório/etiologia , Estudos Retrospectivos
8.
Nat Commun ; 12(1): 5152, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: covidwho-1376195

RESUMO

The immunological features that distinguish COVID-19-associated acute respiratory distress syndrome (ARDS) from other causes of ARDS are incompletely understood. Here, we report the results of comparative lower respiratory tract transcriptional profiling of tracheal aspirate from 52 critically ill patients with ARDS from COVID-19 or from other etiologies, as well as controls without ARDS. In contrast to a "cytokine storm," we observe reduced proinflammatory gene expression in COVID-19 ARDS when compared to ARDS due to other causes. COVID-19 ARDS is characterized by a dysregulated host response with increased PTEN signaling and elevated expression of genes with non-canonical roles in inflammation and immunity. In silico analysis of gene expression identifies several candidate drugs that may modulate gene expression in COVID-19 ARDS, including dexamethasone and granulocyte colony stimulating factor. Compared to ARDS due to other types of viral pneumonia, COVID-19 is characterized by impaired interferon-stimulated gene (ISG) expression. The relationship between SARS-CoV-2 viral load and expression of ISGs is decoupled in patients with COVID-19 ARDS when compared to patients with mild COVID-19. In summary, assessment of host gene expression in the lower airways of patients reveals distinct immunological features of COVID-19 ARDS.


Assuntos
COVID-19/genética , RNA/genética , Síndrome do Desconforto Respiratório/genética , Traqueia/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/imunologia , COVID-19/virologia , Estudos de Casos e Controles , Estudos de Coortes , Estado Terminal , Citocinas/genética , Citocinas/imunologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , RNA/metabolismo , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2/fisiologia , Análise de Sequência de RNA
10.
Crit Care Clin ; 37(4): 795-815, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: covidwho-1242892

RESUMO

Acute respiratory distress syndrome (ARDS) is a heterogeneous clinical syndrome that manifests secondary to numerous etiologic insults, and consequently it is associated with a multitude of pathophysiological abnormalities. Despite more than 50 years of experimental studies, translation of these benchside discoveries into effective biological therapies has been elusive. In this review, some of the key advances made in our knowledge of the pathophysiology of ARDS, based on histopathology, imaging, protein, and transcriptomic biomarkers, are presented. Finally, the role of such human studies in understanding the pathophysiology of coronavirus disease 2019-related ARDS is reviewed.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Biomarcadores , Humanos , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/terapia , SARS-CoV-2
11.
Lancet Respir Med ; 9(6): 549-551, 2021 06.
Artigo em Inglês | MEDLINE | ID: covidwho-1233649
13.
Am J Epidemiol ; 190(4): 539-552, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: covidwho-1172015

RESUMO

There are limited data on longitudinal outcomes for coronavirus disease 2019 (COVID-19) hospitalizations that account for transitions between clinical states over time. Using electronic health record data from a hospital network in the St. Louis, Missouri, region, we performed multistate analyses to examine longitudinal transitions and outcomes among hospitalized adults with laboratory-confirmed COVID-19 with respect to 15 mutually exclusive clinical states. Between March 15 and July 25, 2020, a total of 1,577 patients in the network were hospitalized with COVID-19 (49.9% male; median age, 63 years (interquartile range, 50-75); 58.8% Black). Overall, 34.1% (95% confidence interval (CI): 26.4, 41.8) had an intensive care unit admission and 12.3% (95% CI: 8.5, 16.1) received invasive mechanical ventilation (IMV). The risk of decompensation peaked immediately after admission; discharges peaked around days 3-5, and deaths plateaued between days 7 and 16. At 28 days, 12.6% (95% CI: 9.6, 15.6) of patients had died (4.2% (95% CI: 3.2, 5.2) had received IMV) and 80.8% (95% CI: 75.4, 86.1) had been discharged. Among those receiving IMV, 35.1% (95% CI: 28.2, 42.0) remained intubated after 14 days; after 28 days, 37.6% (95% CI: 30.4, 44.7) had died and only 37.7% (95% CI: 30.6, 44.7) had been discharged. Multistate methods offer granular characterizations of the clinical course of COVID-19 and provide essential information for guiding both clinical decision-making and public health planning.


Assuntos
COVID-19/epidemiologia , Hospitalização/tendências , Unidades de Terapia Intensiva/estatística & dados numéricos , Pandemias , Respiração Artificial/métodos , SARS-CoV-2 , Idoso , COVID-19/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Estados Unidos/epidemiologia
14.
J Intensive Care Soc ; 23(2): 183-190, 2022 May.
Artigo em Inglês | MEDLINE | ID: covidwho-958007

RESUMO

Background: The unprecedented increase in critically ill patients due to the COVID-19 pandemic mandated rapid training in critical care for redeployed staff to work safely in intensive care units (ICU). Methods: The COVID-19 ICU Remote-Learning Course (CIRLC) is a remote delivery course developed in response to the pandemic. This was a one-day course focused on the fundamentals of Intensive Care. The course used blended learning with recorded lectures and interactive tutorials delivered by shielding and frontline ICU trained professionals. The course was developed within one week and piloted at three NHS Trusts. It was then made publicly available free of charge to redeployed healthcare professionals across the UK and Ireland. An iterative cycle of improvement was used to update the course content weekly. A course confidence questionnaire with quantitative and qualitative questions was used to evaluate effectiveness. Data is reported as n (%), means (SD) and thematic analysis was used for the open questions. Results: 1,269 candidates from 171 organisations completed the course, with 99 volunteer trainers. 96% of respondents rated the course as very or extremely useful. 86% rated the online platform as excellent. Overall confidence improved from 2.7/5 to 3.9/5. Qualitative data showed that the course was pitched at the appropriate level, accessible and built clinicians confidence to work in intensive care. Conclusion: This model of educational delivery with a rapid iteration cycle was a pragmatic, effective solution to knowledge-based training under social distancing measures. Whilst full course evaluation was not possible, we believe that this work demonstrates practical guidance on educational response in a pandemic as well as highlighting the altruistic nature of the critical care community.

15.
Intensive Care Med ; 46(12): 2136-2152, 2020 12.
Artigo em Inglês | MEDLINE | ID: covidwho-932503

RESUMO

Although the acute respiratory distress syndrome (ARDS) is well defined by the development of acute hypoxemia, bilateral infiltrates and non-cardiogenic pulmonary edema, ARDS is heterogeneous in terms of clinical risk factors, physiology of lung injury, microbiology, and biology, potentially explaining why pharmacologic therapies have been mostly unsuccessful in treating ARDS. Identifying phenotypes of ARDS and integrating this information into patient selection for clinical trials may increase the chance for efficacy with new treatments. In this review, we focus on classifying ARDS by the associated clinical disorders, physiological data, and radiographic imaging. We consider biologic phenotypes, including plasma protein biomarkers, gene expression, and common causative microbiologic pathogens. We will also discuss the issue of focusing clinical trials on the patient's phase of lung injury, including prevention, administration of therapy during early acute lung injury, and treatment of established ARDS. A more in depth understanding of the interplay of these variables in ARDS should provide more success in designing and conducting clinical trials and achieving the goal of personalized medicine.


Assuntos
Fenótipo , Síndrome do Desconforto Respiratório/genética , Biomarcadores , Humanos , Medicina de Precisão/tendências , Radiografia/métodos , Radiografia/tendências , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/fisiopatologia
16.
Intensive Care Med ; 46(12): 2157-2167, 2020 12.
Artigo em Inglês | MEDLINE | ID: covidwho-911887

RESUMO

Care for patients with acute respiratory distress syndrome (ARDS) has changed considerably over the 50 years since its original description. Indeed, standards of care continue to evolve as does how this clinical entity is defined and how patients are grouped and treated in clinical practice. In this narrative review we discuss current standards - treatments that have a solid evidence base and are well established as targets for usual care - and also evolving standards - treatments that have promise and may become widely adopted in the future. We focus on three broad domains of ventilatory management, ventilation adjuncts, and pharmacotherapy. Current standards for ventilatory management include limitation of tidal volume and airway pressure and standard approaches to setting PEEP, while evolving standards might focus on limitation of driving pressure or mechanical power, individual titration of PEEP, and monitoring efforts during spontaneous breathing. Current standards in ventilation adjuncts include prone positioning in moderate-severe ARDS and veno-venous extracorporeal life support after prone positioning in patients with severe hypoxemia or who are difficult to ventilate. Pharmacotherapy current standards include corticosteroids for patients with ARDS due to COVID-19 and employing a conservative fluid strategy for patients not in shock; evolving standards may include steroids for ARDS not related to COVID-19, or specific biological agents being tested in appropriate sub-phenotypes of ARDS. While much progress has been made, certainly significant work remains to be done and we look forward to these future developments.


Assuntos
Síndrome do Desconforto Respiratório/terapia , Padrão de Cuidado/tendências , COVID-19/complicações , COVID-19/fisiopatologia , Hidratação/métodos , Hidratação/tendências , Humanos , Decúbito Ventral/fisiologia , Síndrome do Desconforto Respiratório/fisiopatologia
17.
Lancet Respir Med ; 8(12): 1233-1244, 2020 12.
Artigo em Inglês | MEDLINE | ID: covidwho-867256

RESUMO

The description of a so-called cytokine storm in patients with COVID-19 has prompted consideration of anti-cytokine therapies, particularly interleukin-6 antagonists. However, direct systematic comparisons of COVID-19 with other critical illnesses associated with elevated cytokine concentrations have not been reported. In this Rapid Review, we report the results of a systematic review and meta-analysis of COVID-19 studies published or posted as preprints between Nov 1, 2019, and April 14, 2020, in which interleukin-6 concentrations in patients with severe or critical disease were recorded. 25 COVID-19 studies (n=1245 patients) were ultimately included. Comparator groups included four trials each in sepsis (n=5320), cytokine release syndrome (n=72), and acute respiratory distress syndrome unrelated to COVID-19 (n=2767). In patients with severe or critical COVID-19, the pooled mean serum interleukin-6 concentration was 36·7 pg/mL (95% CI 21·6-62·3 pg/mL; I2=57·7%). Mean interleukin-6 concentrations were nearly 100 times higher in patients with cytokine release syndrome (3110·5 pg/mL, 632·3-15 302·9 pg/mL; p<0·0001), 27 times higher in patients with sepsis (983·6 pg/mL, 550·1-1758·4 pg/mL; p<0·0001), and 12 times higher in patients with acute respiratory distress syndrome unrelated to COVID-19 (460 pg/mL, 216·3-978·7 pg/mL; p<0·0001). Our findings question the role of a cytokine storm in COVID-19-induced organ dysfunction. Many questions remain about the immune features of COVID-19 and the potential role of anti-cytokine and immune-modulating treatments in patients with the disease.


Assuntos
COVID-19/sangue , Síndrome da Liberação de Citocina/sangue , Interleucina-6/sangue , Biomarcadores/sangue , COVID-19/imunologia , Síndrome da Liberação de Citocina/imunologia , Humanos , Interleucina-6/imunologia , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/imunologia , Sepse/sangue , Sepse/imunologia , Índice de Gravidade de Doença
19.
Lancet Respir Med ; 8(12): 1209-1218, 2020 12.
Artigo em Inglês | MEDLINE | ID: covidwho-731948

RESUMO

BACKGROUND: In acute respiratory distress syndrome (ARDS) unrelated to COVID-19, two phenotypes, based on the severity of systemic inflammation (hyperinflammatory and hypoinflammatory), have been described. The hyperinflammatory phenotype is known to be associated with increased multiorgan failure and mortality. In this study, we aimed to identify these phenotypes in COVID-19-related ARDS. METHODS: In this prospective observational study done at two UK intensive care units, we recruited patients with ARDS due to COVID-19. Demographic, clinical, and laboratory data were collected at baseline. Plasma samples were analysed for interleukin-6 (IL-6) and soluble tumour necrosis factor receptor superfamily member 1A (TNFR1) using a novel point-of-care assay. A parsimonious regression classifier model was used to calculate the probability for the hyperinflammatory phenotype in COVID-19 using IL-6, soluble TNFR1, and bicarbonate levels. Data from this cohort was compared with patients with ARDS due to causes other than COVID-19 recruited to a previous UK multicentre, randomised controlled trial of simvastatin (HARP-2). FINDINGS: Between March 17 and April 25, 2020, 39 patients were recruited to the study. Median ratio of partial pressure of arterial oxygen to fractional concentration of oxygen in inspired air (PaO2/FiO2) was 18 kpa (IQR 15-21) and acute physiology and chronic health evaluation II score was 12 (10-16). 17 (44%) of 39 patients had died by day 28 of the study. Compared with survivors, patients who died were older and had lower PaO2/FiO2. The median probability for the hyperinflammatory phenotype was 0·03 (IQR 0·01-0·2). Depending on the probability cutoff used to assign class, the prevalence of the hyperinflammatory phenotype was between four (10%) and eight (21%) of 39, which is lower than the proportion of patients with the hyperinflammatory phenotype in HARP-2 (186 [35%] of 539). Using the Youden index cutoff (0·274) to classify phenotype, five (63%) of eight patients with the hyperinflammatory phenotype and 12 (39%) of 31 with the hypoinflammatory phenotype died. Compared with matched patients recruited to HARP-2, levels of IL-6 were similar in our cohort, whereas soluble TNFR1 was significantly lower in patients with COVID-19-associated ARDS. INTERPRETATION: In this exploratory analysis of 39 patients, ARDS due to COVID-19 was not associated with higher systemic inflammation and was associated with a lower prevalence of the hyperinflammatory phenotype than that observed in historical ARDS data. This finding suggests that the excess mortality observed in COVID-19-related ARDS is unlikely to be due to the upregulation of inflammatory pathways described by the parsimonious model. FUNDING: US National Institutes of Health, Innovate UK, and Randox.


Assuntos
COVID-19/classificação , Síndrome do Desconforto Respiratório/classificação , APACHE , COVID-19/sangue , COVID-19/mortalidade , Estudos de Casos e Controles , Síndrome da Liberação de Citocina/sangue , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Prospectivos , Receptores Tipo I de Fatores de Necrose Tumoral , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA